INTEGRALES SINGULIÈRES. Doctorat thesis (2011) , Université de Batna 2.
dc.contributor.author | ALLAOUI SALAH EDDINE | |
dc.date.accessioned | 2023-02-27T09:55:03Z | |
dc.date.available | 2023-02-27T09:55:03Z | |
dc.date.issued | 2017-04-04 | |
dc.description.abstract | On the localized Besov space (Bs p;q(Rn))`r we study the boundedness of the singular integral operators defined by pseudo differential operators of order m with symbols satisfying a condition of Dini-type. Then we deduce the continuity on pointwise multipliers Besov algebra space M(Bs p;q(Rn)) when p < q: We are interested in the superposition operators Tf (g) := f ◦g on vector valued Besov and Lizorkin-Triebel spaces of positive smoothness exponent s. We establish that the local Lipschitz continuity of f is necessary if Bs p;q(Rn;Rm) (or Fs p;q(Rn;Rm)) is imbedded into L1(Rn;Rm), and that the uniform Lipschitz continuity of f is necessary if not. We study also the regularity of Tf | |
dc.identifier.uri | http://dspace.univ-batna2.dz/handle/123456789/381 | |
dc.language.iso | fr | |
dc.title | INTEGRALES SINGULIÈRES. Doctorat thesis (2011) , Université de Batna 2. |