INTEGRALES SINGULIÈRES. Doctorat thesis (2011) , Université de Batna 2.

dc.contributor.authorALLAOUI SALAH EDDINE
dc.date.accessioned2023-02-27T09:55:03Z
dc.date.available2023-02-27T09:55:03Z
dc.date.issued2017-04-04
dc.description.abstractOn the localized Besov space (Bs p;q(Rn))`r we study the boundedness of the singular integral operators defined by pseudo differential operators of order m with symbols satisfying a condition of Dini-type. Then we deduce the continuity on pointwise multipliers Besov algebra space M(Bs p;q(Rn)) when p < q: We are interested in the superposition operators Tf (g) := f ◦g on vector valued Besov and Lizorkin-Triebel spaces of positive smoothness exponent s. We establish that the local Lipschitz continuity of f is necessary if Bs p;q(Rn;Rm) (or Fs p;q(Rn;Rm)) is imbedded into L1(Rn;Rm), and that the uniform Lipschitz continuity of f is necessary if not. We study also the regularity of Tf
dc.identifier.urihttp://dspace.univ-batna2.dz/handle/123456789/381
dc.language.isofr
dc.titleINTEGRALES SINGULIÈRES. Doctorat thesis (2011) , Université de Batna 2.
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ALLAOUI SALAH EDDINE.pdf
Size:
468.24 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: