EXISTENCE GLOBALE OU EXPLOSION EN TEMPS FINI DES SOLUTIONS D’EQUATION D’EVOLUTION. Doctorat thesis(2017), Université de Batna 2.

dc.contributor.authorTOUIL Asma
dc.date.accessioned2023-02-23T12:25:35Z
dc.date.available2023-02-23T12:25:35Z
dc.date.issued2017-07-07
dc.description.abstractThe purpose of this thesis is to study the question of global existence of solutions for some non linear evolution equations. In the first part, we are interested with the study of some reaction-diffusion systems arising fromthe diffusion of an epidemic phenomena,with homogeneousNeumann boundary conditions and nonlinearities of weakly exponential growth. We establish a result on the global existence and the asymptotic behavior of these solutions via a Lyapunov functional. In the second part, a threshold condition, given by the basic reproduction number, determines the global stability of the equilibrium points. In the last, we deal with the stability analysis of equilibrium points of the ODE system corresponding to the system studied in the first part.
dc.identifier.urihttp://dspace.univ-batna2.dz/handle/123456789/327
dc.language.isofr
dc.titleEXISTENCE GLOBALE OU EXPLOSION EN TEMPS FINI DES SOLUTIONS D’EQUATION D’EVOLUTION. Doctorat thesis(2017), Université de Batna 2.
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Asma Touil.pdf
Size:
768.28 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: